
CRAZYSWARM FRAMEWORK FOR MULTIPLE DRONES 

This tutorial is meant to cover the crazyswarm framework and how to use it for synchronised drone 

flight. This framework offers all the necessary components for controlling multiple drones remotely, 

by relating the drone flight controller of the Crazyflie to a set of controllers on the PC, but also by 

offering ways to send trajectories to the drones in realtime.  

All this data interlinking makes use of ROS which offers sufficient system modularity to use this 

framework in unprecedented, creative ways. This tutorial is therefore directed at interaction 

designers who look to fly multiple drones using their own choice of inputs. The main challenges in 

swarm robotics are addressed in this framework, namely the system latency in terms of system 

communication, and channel testing for the best signal possible. 

According to the authors, current limitations to the framework’s reliability are the controller failures, 

improving object tracking failure recovery, and including better planning methods which take 

aerodynamic effects such as downwash into account explicitly. 

 

 

 

 

 

 

# Why a swarming architecture is required 

 

At its simplest, Crazyswarm attempts to couple an external motion capture technology like Optitrack 

with the rest of a drone’s control loop: knowing its position, the drone will be able to generate and 

follow a trajectory more precisely. When viewing a single body, motion capture certainly has sub-

millimeter accuracy. 

However, as the number of drones increases, there are two limiting factors to the drone’s control 

loop: the first is recognition of the drones by the optical capture system, and the second is low 

communication bandwidth. Multiple algorithms are therefore incorporated into this framework to 

mitigate the effects of these processes. These effects will be more thoroughly explored later in this 

tutorial. 

Some key links 

The official changelog      https://crazyswarm.readthedocs.io/en/latest/changelog.html 

Set up (Read the docs yourself!)   https://crazyswarm.readthedocs.io/en/latest/ 

Theoretical underpinnings:   http://act.usc.edu/publications/Preiss_ICRA2017.pdf 

To-the-point powerpoint:    https://drive.google.com/file/d/15favAyrLLpC_O6nrAp-eIbZijFUMLgwV/view 

https://crazyswarm.readthedocs.io/en/latest/changelog.html
https://crazyswarm.readthedocs.io/en/latest/
http://act.usc.edu/publications/Preiss_ICRA2017.pdf


As the number of drones increases, an interesting swarm feature is managing large numbers of 

drones. Crazyswarm offers command-line tools and a GUI for mass rebooting, firmware updates, 

firmware version query, and battery voltage checks over the radio. A power-save mode turns off the 

main microcontroller and LED ring while leaving the radio active, permitting powering on the 

Crazyflie remotely. 

Finally, a ROS framework is utilized on the PC. By broadcasting the drone’s pose among other things, 

ROS is, as stated earlier, an entrypoint for other software to interact with the drone’s control loop. 

To reduce latency however, ROS messages are not used in the critical path between receiving data 

from the motion-capture system and broadcasting estimated poses to the Crazyflies.  

 

  

Interaction designers may want to look at better understanding ROS so to use such inputs and 

outputs conveniently in their code and in their simulations. 

➢ SEE THE ROS AND LINUX BACKGROUND TUTORIAL 

 

Note: a Python scripting layer supports development of complex multi-stage formation flight plan. 

See Trajectory tutorial for this section. 

➢ SEE THE TRAJECTORY TUTORIAL 



 ## Recognising the drones 

Standard rigid-body motion-capture software such as Vicon Tracker requires a unique marker 

arrangement for each tracked object. The Crazyflie’s small size limits the number of locations to place 

a marker, making it impossible to form dozens unique arrangements that can be reliably 

distinguished. In this way, optical motion capture reaches a key limitation: when using a motion 

capture framework with very small robots, many rigid bodies seem to have identical capture marker 

arrangements. As a result, the cameras are prone to confusing the robots from one another, 

especially as the robots move past one another – contributing to other forms of occlusion. 

Overcoming motion capture’s single point of failure will require reimagining a new state estimation 

system, but it is worth the effort: motion capture can eventually use their sub-millimeter accuracy in 

multiple UAV scenarios. In comparison, ultra-wideband radio triangulation shows position errors of 

over 10 centimeters, too large for dense formations. As for vision-based methods, while they are 

both accurate and decentralized, the required cameras and computers necessitate a much larger 

vehicle. 

## Low communication bandwidth 

The second key issue with large drone swarms is communication bandwidth over large numbers of 

drones. While remote controlled drones are using frequency hopping techniques 

ur system fully utilizes the vehicles’ onboard computation, allowing for robustness against unreliable 

communication and a rich set of trajectory planning methods requiring little radio bandwidth. 

 

# The root of the problem: the control loop 

 

The main onboard loop runs at 500 Hz. In each loop cycle, the vehicle reads its Inertial Measurement 

Unit (IMU) and runs the state estimator, trajectory evaluator, and position controller. Messages with 

external pose estimates arrive asynchronously and are fused into the state estimate on the next 

cycle. 

 

➢ As a result of this control loop, a key criterion that is used to demonstrate the system’s 

robustness against communication loss during operation is the position error as we reduce 

the frequency of the position update rate.  



 

➢ The delay between the immediate onboard IMU response and the corresponding change in 

external position measurement captures the full system latency. We read these values in 

real time via a JTAG debug adapter. 

 

ADD THIS 

# Understanding Optical Motion Capture 

The most popular forms of motion capture, namely Optitrack or VICON, use a set of technological 

tools called optical motion capture. Optical motion capture uses reflective trackers coupled with 

infrared sensors. The tracking elements or trackers are small reflective balls. A camera pointed 

towards the tracker outputs infrared light via its LED illumination ring. The lens at the center of the 

ring capture any and all IR incoming light. 

 

There’s a lot of assuming. 

There is a large need for a system architecture that can aid the localizer.  

Crazyswarm mitigates this problem by relying on raw point clouds from the motion-capture system, 

and implementing its own object tracker based on the Iterative Closest Point (ICP) algorithm that 

handles identical marker arrangements.  



# Iterative Closest Point 

With identical marker arrangements for each vehicle, the object tracker needs some 

additional source of information to establish the mapping between vehicle 

identities (radio addresses) and spatial locations. We currently supply this 

information with a configuration file containing a fixed initial location for each 

vehicle. However, it is not feasible to place each vehicle at its exact configured 

position before every flight. To allow for small deviations, we perform a nearest-

neighbor search within a layout-dependent radius about the initial position, and try 

ICP with many different initial guesses for vehicle yaw. We accept the best guess 

only if its resulting alignment error is low (less than 1 mm mean squared Euclidean 

distance between aligned points).  

Each frame, we acquire a raw point cloud from the motioncapture system. For each 

object, we use ICP to register the marker positions corresponding to the object’s last 

known pose against the entire scene point cloud. This process is independent for 

each object, so it can be executed in parallel. This approach assumes that there are 

no prolonged occlusions during the duration of the flight. We limit ICP to five 

iterations, which allows operation at 75 Hz with 49 robots using our computer 

hardware.  

Motion-capture systems sometimes deliver a point cloud with spurious or missing 

points; if undetected, this may cause tracking errors. To mitigate these errors, we 

compute linear and angular velocities from the ICP alignments and reject physically 

implausible values as incorrect alignments. In combination with our on-board state 

estimation, a few missing frames do not cause significant instabilities, making 

tracking reliable in practice. 

# Communication infrastructure 

Request-response is primarily used for configuration while the Crazyflie is still on 

the ground. This includes uploading a trajectory, changing flight parameters such 

as controller gains, and assigning each Crazyflie to a group. Broadcasting is used 

during the flight to minimize latency for position feedback, and to achieve 

synchronized behavior for taking off, landing, starting a trajectory, etc. Broadcast 

commands can be restricted to subsets of the swarm by including a group ID 

number.  

Our communication does not use a standard transport layer and hence, we need to 

handle sporadic packet drops as part of our protocol. In order to achieve low 

latency, we do not aim for guaranteed packet delivery, but rather for a high 

probability of reliable communication. In our protocol, all commands are 

idempotent, so they can be received multiple times without any side effects. This 

allows us to repeat request-response commands until acknowledged or until a 

timeout occurs. Swarm-coordination commands, such as taking off, do not wait for 

an acknowledgement but are repeated several times for a high probability that all 

Crazyflies receive the command. Since external pose estimates are send at a high 

fixed rate every 10 ms, there is no need to explicitly repeat such messages. 



 Empirically, for repeated commands, the likelihood of packet loss depends on the 

rate at which the command is repeated. 

 

Our communication infrastructure uses compressed one-way data flow and 

supports a large number of vehicles per radio. We achieve reliable flight with 

accurate tracking (< 2 cm mean position error) by implementing the majority of 

computation onboard, including sensor fusion, control, and some trajectory 

planning. We provide various examples and empirically determine latency and 

tracking performance for swarms with up to 49 vehicles. 

 

 

Common questions: 

 

Why use raw point clouds? 

Standard rigid-body motion-capture software such as Vicon Tracker requires a unique marker 

arrangement for each tracked object. The Crazyflie’s small size limits the number of locations to place 

a marker, making it impossible to form 49 unique arrangements that can be reliably distinguished. 

Therefore, we obtain only raw point clouds from the motion-capture system, and implement our 

own object tracker based on the Iterative Closest Point (ICP) algorithm [13] that handles identical 

marker arrangements. Our method is initialized with known positions, and subsequently updates the 

positions with frame-by-frame tracking. 

 

How to keep track of separate crazyflies? 

Each frame, we acquire a raw point cloud from the motioncapture system. For each object, we use 

ICP to register the marker positions corresponding to the object’s last known pose against the entire 

scene point cloud. This process is independent for each object, so it can be executed in parallel. This 

approach assumes that there are no prolonged occlusions during the duration of the flight. We limit 

ICP to five iterations, which allows operation at 75 Hz with 49 robots using our computer hardware. 

How to mitigate occlusions? 

Motion-capture systems sometimes deliver a point cloud with spurious or missing points; if 

undetected, this may cause tracking errors. To mitigate these errors, we compute linear and angular 

velocities from the ICP alignments and reject physically implausible values as incorrect alignments. In 

combination with our on-board state estimation, a few missing frames do not cause significant 

instabilities, making tracking reliable in practice. 

Initialization algorithm: to allow for small deviations 



With identical marker arrangements for each vehicle, the object tracker needs some additional 

source of information to establish the mapping between vehicle identities (radio addresses) and 

spatial locations. We currently supply this information with a configuration file containing a fixed 

initial location for each vehicle. However, it is not feasible to place each vehicle at its exact 

configured position before every flight. To allow for small deviations, we perform a nearest-neighbor 

search within a layout-dependent radius about the initial position, and try ICP with many different 

initial guesses for vehicle yaw. We accept the best guess only if its resulting alignment error is low 

(less than 1 mm mean squared Euclidean distance between aligned points). 

 

Communication loss 

To reduce communication bandwidth requirements and maintain robustness against temporary 

communication loss, we fuse motion-capture and IMU measurements onboard in an Extended 

Kalman Filter (EKF). The filter is driven by IMU measurements at 500 Hz and estimates the states (p, 

v, q) where p ∈ R 3 is the vehicle’s position, v ∈ R 3 is its velocity, and q ∈ S 3 is the unit quaternion 

transforming the vehicle’s local coordinate frame into world coordinates. 

 

We use two different kinds of communication: request-response and broadcasting. Request-

response is primarily used for configuration while the Crazyflie is still on the ground. This includes 

uploading a trajectory, changing flight parameters such as controller gains, and assigning each 

Crazyflie to a group. Broadcasting is used during the flight to minimize latency for position feedback, 

and to achieve synchronized behavior for taking off, landing, starting a trajectory, etc. Broadcast 

commands can be restricted to subsets of the swarm by including a group ID number.  

Our communication does not use a standard transport layer and hence, we need to handle sporadic 

packet drops as part of our protocol. In order to achieve low latency, we do not aim for guaranteed 

packet delivery, but rather for a high probability of reliable communication. In our protocol, all 

commands are idempotent, so they can be received multiple times without any side effects. This 

allows us to repeat request-response commands until acknowledged or until a timeout occurs. 

Swarm-coordination commands, such as taking off, do not wait for an acknowledgement but are 

repeated several times for a high probability that all Crazyflies receive the command. Since external 

pose estimates are send at a high fixed rate every 10 ms, there is no need to explicitly repeat such 

messages. 

 

Step change in controller setpoint 

Commanding a quadcopter to switch from hovering to elliptical motion produces a large step change 

in the controller setpoint, potentially causing instability. Our system overcomes this issue by using 

the single-piece polynomial planner to plan a trajectory that smoothly accelerates into the ellipse, 

iteratively replanning with longer time horizons until it achieves a trajectory that respects the 

vehicle’s dynamic limits. The procedure is general and can be used to plan a smooth start from hover 

for any periodic trajectory. 

 

Interactive avoid obstacle mode 



The planners discussed so far can follow predefined paths, but are not suitable for dynamically 

changing environments. For the case of a single, moving obstacle at a known location, such as a 

human, we use a specialized avoid-obstacle mode. The planner is fully distributed and only needs to 

know the quadcopter’s position p, its assigned home position phome, and the obstacle’s position 

pobst. 

 

 


