
FLYING-THE-CRAZYFLIE PROJECT

This project uses the Crazyflie drone specimen, and programs it to fly autonomously. This section

covers behaviour planning for a single Crazyflie using onboard hardware. The next project looks to

integrate this functionality into the Crazyswarm framework with multiple drones. These approaches

has been used with an optic flow system and then adapted to an external localization technology.

Flying the crazyflie alone is an important step as it serves to:

• Use as little functionality as possible for a particular scenario

• Create fast demoes.

Various functionalities are designed and we will be able to explore them in greater depth in a series

of tutorials. This page, instead, looks at what was achieved in the project. Here are the tutorials for

more information.

• Crazyflie drone architecture

• Flight tips

• Trajectory generation

• Behaviour planning

Each usecase has different requirements, whether simply to reach a point, or to do so in a way that

takes into account the environment and the constraints we put on the drone. The approach here

will therefore start with demo-able results in constrained environments, and then form a more

modular framework that allow more responsive, and more stable drone usecases.

SETUP INSTRUCTIONS

The Crazyflie is assembled using these instructions.

https://www.bitcraze.io/documentation/tutorials/getting-started-with-crazyflie-2-x/

PYTHON TRAJECTORY PLANNER

First, we get a Crazyflie drone up in the air using a list of waypoints. Most applications require this

alone. The Crazyflie framework is a Python companion library that can perform automated

behaviours, given a set of points. This approach has been successfully coupled to an optic flow

system which is readily attached to the drone. A demo of the procedure is available here.

Note: Testing the optic flow system has revealed software errors such as erratic behaviour when

navigating over crevisses. This was an error detected in the Bitcraze changelog, further motivating

the importance of consulting the changelog.

CUSTOM SHAPES

The python script can be further expanded. A set of helper scripts aid in generating known shapes.

BEHAVIOUR PLANNING

More intricate flight plans can be developed with better code organisation. Note: A quick starter on

behaviour planning is covered in the behaviour planning tutorial. Testing these flight plans might

require a drone, but the real drone is prone to accidents. A simulator is used for quick testing.

Download link: https://github.com/udacity/FCND-Backyard-Flyer

https://github.com/USC-ACTLab/crazyswarm/tree/master/ros_ws/src/crazyswarm/scripts
https://github.com/udacity/FCND-Backyard-Flyer

BEZIER TRAJECTORIES

Waypoint-following however, can only guarantee, well, reaching the waypoints. In the interest of

stability, we might require a constant velocity, or velocity/acceleration threshholds. A Bézier curve

can be used to specify the velocity over time of an object. We can then optimise a list of waypoints to

a clearer route. Using a specific github, we have helper scripts that serve to create more intricate

trajectories. A demo of the procedure is available here (https://youtu.be/DazGxY6YyCM).

Going further

Traditionally, robotics has separated the generation of a trajectory from trajectory

following, and a neat research paper explains the variety of algorithms that can be used for this

purpose. W. Hoenig, author of this paper, is incidentally the main contributor on the Crazyswarm

github, a framework for drone swarms that offers the necessary infrastructure for following

simultaneous trajectories (I write about it a little later).

The use of spline trajectories is commonplace in robotics, and a drone racing platform finds

how to exploit spline trajectories in 6 DOF. The RPG drone racing framework explores this and other

trajectory following algorithms on their github.

Going beyond with trajectory following, there has been a serious shortcoming in the last few

years of drone development, and that is the poor localization offered by Bayesian filters. Research

laboratories frequently use an external localization system to circumvent this. I used the Optitrack

system for this purpose.

A recent paper trains a drone to follow a trajectory with its VIO-IMU in zero-shot transfer

learning: this approach comes to show the progress autonomous drones have made over the last

few years.

https://github.com/whoenig/uav_trajectories
https://youtu.be/DazGxY6YyCM

