
FLYING-THE-CRAZYFLIE PROJECT 

This project uses the Crazyflie drone specimen, and programs it to fly autonomously. This section 

covers behaviour planning for a single Crazyflie using onboard hardware. The next project looks to 

integrate this functionality into the Crazyswarm framework with multiple drones. These approaches 

has been used with an optic flow system and then adapted to an external localization technology.  

Flying the crazyflie alone is an important step as it serves to: 

• Use as little functionality as possible for a particular scenario 

• Create fast demoes. 

Various functionalities are designed and we will be able to explore them in greater depth in a series 

of tutorials. This page, instead, looks at what was achieved in the project. Here are the tutorials for 

more information. 

• Crazyflie drone architecture 

• Flight tips 

• Trajectory generation 

• Behaviour planning 

          

Each usecase has different requirements, whether simply to reach a point, or to do so in a way that 

takes into account the environment and the constraints we put on the drone. The approach here 

will therefore start with demo-able results in constrained environments, and then form a more 

modular framework that allow more responsive, and more stable drone usecases. 

SETUP INSTRUCTIONS 

The Crazyflie is assembled using these instructions. 

 

https://www.bitcraze.io/documentation/tutorials/getting-started-with-crazyflie-2-x/


PYTHON TRAJECTORY PLANNER 

First, we get a Crazyflie drone up in the air using a list of waypoints. Most applications require this 

alone. The Crazyflie framework is a Python companion library that can perform automated 

behaviours, given a set of points. This approach has been successfully coupled to an optic flow 

system which is readily attached to the drone. A demo of the procedure is available here. 

Note: Testing the optic flow system has revealed software errors such as erratic behaviour when 

navigating over crevisses. This was an error detected in the Bitcraze changelog, further motivating 

the importance of consulting the changelog. 

 

CUSTOM SHAPES  

The python script can be further expanded. A set of helper scripts aid in generating known shapes.  

 

 

BEHAVIOUR PLANNING 

More intricate flight plans can be developed with better code organisation. Note: A quick starter on 

behaviour planning is covered in the behaviour planning tutorial. Testing these flight plans might 

require a drone, but the real drone is prone to accidents. A simulator is used for quick testing. 

Download link: https://github.com/udacity/FCND-Backyard-Flyer 

  

 

 

 

https://github.com/USC-ACTLab/crazyswarm/tree/master/ros_ws/src/crazyswarm/scripts
https://github.com/udacity/FCND-Backyard-Flyer


BEZIER TRAJECTORIES 

Waypoint-following however, can only guarantee, well, reaching the waypoints. In the interest of 

stability, we might require a constant velocity, or velocity/acceleration threshholds. A Bézier curve 

can be used to specify the velocity over time of an object. We can then optimise a list of waypoints to 

a clearer route. Using a specific github, we have helper scripts that serve to create more intricate 

trajectories. A demo of the procedure is available here (https://youtu.be/DazGxY6YyCM). 

  

 

Going further 

Traditionally, robotics has separated the generation of a trajectory from trajectory 

following, and a neat research paper explains the variety of algorithms that can be used for this 

purpose. W. Hoenig, author of this paper, is incidentally the main contributor on the Crazyswarm 

github, a framework for drone swarms that offers the necessary infrastructure for following 

simultaneous trajectories (I write about it a little later). 

The use of spline trajectories is commonplace in robotics, and a drone racing platform finds 

how to exploit spline trajectories in 6 DOF. The RPG drone racing framework explores this and other 

trajectory following algorithms on their github.  

Going beyond with trajectory following, there has been a serious shortcoming in the last few 

years of drone development, and that is the poor localization offered by Bayesian filters. Research 

laboratories frequently use an external localization system to circumvent this. I used the Optitrack 

system for this purpose. 

A recent paper trains a drone to follow a trajectory with its VIO-IMU in zero-shot transfer 

learning: this approach comes to show the progress autonomous drones have made over the last 

few years. 

 

 

https://github.com/whoenig/uav_trajectories
https://youtu.be/DazGxY6YyCM

